
From Zero to Open Source Hero
Contributing to Spring projects

Agenda
About me

What it means to contribute?

Why contribute?

Where to start?

Managing your forks

Anatomy of a good Pull Request

Lifecycle of a Pull Request

Conclusion

Questions

Vedran Pavić

● Software Development Engineer at Kapsch CarrierCom d.o.o.

● Open Source Software enthusiast
○ Java, Spring, Linux

● Active contributor to multiple Spring projects

● Spring Session committer

What it means to contribute?

There’s more to contributing than just code

● Helping other users matters
○ Issue tracker, Gitter, Stack Overflow

● Reporting issues matters
○ stackoverflow.com/help/mcve

● Documentation matters - a LOT

What are the prerequisites?

● Knowledge of Git, related workflows and GitHub

● Willingness to discuss, elaborate and rework your proposals

● Contributor License Agreement (CLA)
○ cla.pivotal.io

● Patience :)

Why contribute?

Spring embraces your contributions

● Move to GitHub made contributing much easier

● Projects are well managed with contributors in mind
○ Easy to build, easy to import in IDE

● Contributions are properly attributed
○ Commits, @author tags

Spring embraces your contributions

● Numbers are also telling:

What do you get out of it?

● Learn new skills, or enhance existing ones
○ Apply the ideas from Spring projects to your own projects

● Meet the people behind Spring and collaborate with them

● Grow your reputation

● Contributing is an empowering experience

Where to start?

Use spring.io as service discovery

● spring.io/projects contains pointers to all relevant project’s resources
○ issue tracker, source repository, CI server, Stack Overflow tag

Get familiar with the project

● Source repositories contain resources for contributors
○ README, CONTRIBUTING, CODE_OF_CONDUCT

● Note the project’s active branches

● Check out the issues marked for contribution
○ JIRA roadmap, GitHub labels

Get familiar with the project

● Project build: Gradle or Maven

● Single-click builds that are easy on the newcomers
○ As simple as ./gradlew build or ./mvnw clean install

● Check out resources for contributors for more details
○ Some projects have special build profiles, for example documentation builds

Get familiar with the project

● Note the preferred Git workflows
○ Merge vs rebase

● Note the preferred code style
○ Check source repository for IDE config files

● Use other people’s contributions as a reference

● Reach out to the project maintainers or community
○ Gitter or Stack Overflow

Managing your forks

Creating a fork

● A fork is a copy of a repository

● Serves as a base for contributing activities

Keep your forks lean

● Forking creates a copy with all branches of the original repository
○ Some of them are not active, or not relevant for contributor

● Deleting needless branches makes your fork easier to maintain

Keep your forks up to date

● Configure a remote that points to original repository
$ git remote add upstream git@github.com:spring-projects/spring-session.git

$ git remote -v

origin git@github.com:vpavic/spring-session.git (fetch)

origin git@github.com:vpavic/spring-session.git (push)

upstream git@github.com:spring-projects/spring-session.git (fetch)

upstream git@github.com:spring-projects/spring-session.git (push)

Keep your forks up to date

● Fetch and merge the changes from the upstream repository
$ git fetch upstream

...

From github.com:spring-projects/spring-boot

 216506d20f..e236b71615 1.5.x -> upstream/1.5.x

 3abd8d3adf..269cea291c master -> upstream/master

$ git checkout 1.5.x && git merge upstream/1.5.x && git push

$ git checkout master && git merge upstream/master && git push

Keep your forks up to date

● Tags need to be handled separately
$ git fetch upstream --tags

...

From github.com:spring-projects/spring-boot

 * [new tag] v1.5.3.RELEASE -> v1.5.3.RELEASE

$ git push --tags

Clean up your local branches

● Clean up after deleting branches on GitHub
$ git remote prune origin

Pruning origin

URL: git@github.com:spring-projects/spring-integration

 * [pruned] origin/INT-4248

$ git branch -vv | grep gone

 INT-4248 a2458f78f [origin/INT-4248: gone] Use StringRedisTemplate

$ git branch -d INT-4248

Add new upstream branches

● As development of the upstream goes on, new branches
$ git checkout --track upstream/4.2.x

$ git branch -vv | grep upstream

* 4.2.x f166bd1bd [upstream/4.2.x] Groovy test: Fix format for `MM` instead of `mm`

$ git push --set-upstream origin/4.2.x

Anatomy of a good Pull Request

Before you start

● If the issue ticket exists, drop a note you’re working on it
○ To help prevent duplicating efforts

● Otherwise opening issue might be required

● Pick the appropriate target branch
○ Semantic versioning matters - semver.org

● If in doubt about target branch consult the maintainers

Working on your changes

● Configure your IDE to use appropriate code style
○ Most projects contain Eclipse formatter configuration files
○ IntelliJ IDEA users will find Eclipse Code Formatter plugin useful

● Create a dedicated feature branch for your changes - use target branch as
base

● Initially make your changes a single commit unless there’s a good reason
to do otherwise

Tests or it didn’t happen

● Unit tests are a must if you change the code

● If you’re fixing a bug add a unit test that reproduces the problem
○ Check out the contributors resources for any policies on unit tests

● If you’re adding a new functionality a substantial set of tests is expected
○ Check the existing unit tests for similar/related functionalities

Write good commit messages

● Try avoiding lazy commit messages :)

xkcd.com/1296

Write good commit messages

● There are some excellent resources on writing good commit messages
○ chris.beams.io/posts/git-commit

● Good commit message does you a favor when opening the PR
○ Commit message is automatically used for PR description on GitHub

Build the project before submitting PR

● Builds are single-click and easy to get running
○ Check contributor resources for info on additional build profiles, like documentation

● Contains additional checks, such as Checkstyle
○ Remember to import the IDE code style config
○ Use Checkstyle plugin for your IDE to discover errors early

● Tests the impact of your changes on entire project

Build the project before submitting PR

● Full project build takes some time however so you can get creative :)

xkcd.com/303

Build the project before submitting PR

● If the build fails for you for reasons unrelated to your changes check the
project’s source repository and/or CI server for info

Submitting the PR

● Remember to select the target branch

Lifecycle a Pull Request

Pull Request checks

● Submitting a PR will usually trigger some actions
○ Contributor License Agreement (CLA) check
○ PR branch build on Travis CI

Pull Request checks

● If you’re first time contributor you’ll be asked to sign CLA
○ cla.pivotal.io has all the details
○ The process in nearly automatic these days

● Minor changes (e.g. typos) can skip some checks
○ CLA not required - add “Obvious Fix” to the PR description
○ Skip the Travis CI build - include “[ci skip]” in commit message

Pull Request checks

● Travis CI builds can sometime get stuck or fail for transient reasons
○ You can trigger the build again by closing and reopening the PR
○ Or more elegantly using Git

 $ git commit --amend --no-edit && git push --force

Discussion and reviews

● Expect discussion on your proposals, especially if your PR is introducing
new features

● Often times you’ll be asked to rework your proposal

● Don’t open a PR and walk away
○ If unsure how to rework your proposal ask for help
○ If you have no time to rework let the maintainers know

Updating your Pull Request

● Requested changes are done on the existing PR - no need to close existing
and open new one

● You can simply push more commits to your PR branch

● You can update the existing commit (force push is needed)

$ git add . && git commit --amend --no-edit && git push --force

Updating your Pull Request

● While reworking the PR it might be a good idea to rebase your PR branch
on the current state of base branch
○ Remember the tips for managing forks
○ This especially matters is your PR has been on the shelf for some time

In the end

● You didn’t receive any response - be patient
○ It might get some time for maintainers to get to your PR

● Your contribution was not accepted - don’t get discouraged
○ If you’re active in the open source this will happen sooner or later :)

● Your contribution was accepted - welcome to the club!

Conclusion

Spring ǻ contributions

● Spring and entire ecosystem around it wouldn’t be what it is today without
contributors

● Significant efforts have been made to make Spring projects contributor
friendly

The time is right to start contributing

● With Spring 5 around the corner there’s a lot of movement across the
Spring ecosystem
○ Move to Java 8 as baseline, introduction of reactive programming model

● Most Spring projects are moving to new major release as a consequence
○ Chance to make significant changes

Questions?

Thanks!
@vedran_pavic
github.com/vpavic

