
Spring @Async

Dragan Juričić, PBZ

May 2015



Topics

2

 Concept of thread pools

 Servlet 3 async configuration

 Task Execution and Scheduling

 Servlet 3 - asynchronous request processing

 Benefits and downsides



Concept of thread pools

3



Concept of thread pools

 thread per request – server model (Tomcat, Jetty, WAS...)

 simplistic model - create a new thread for each task

 disadvantages of the thread-per-task approach:

 overhead of creating creating and destroying threads

 too many threads cause the system to run out of memory

 thread pools based on work queue offers a solution

 Spring TaskExecutor - abstraction for thread pooling

4



TaskExecutor types

5

pre-built implementations included with the Spring

 SimpleAsyncTaskExecutor - starts up a new thread for each 

invocation, support a concurrency limit

 SyncTaskExecutor - implementation doesn't execute 

invocations asynchronously, takes place in the calling thread

 ConcurrentTaskExecutor - wrapper for a Java 5 

java.util.concurrent.Executor

 ThreadPoolTaskExecutor - exposes the Executor

configuration parameters as bean properties

 WorkManagerTaskExecutor - implements the CommonJ

WorkManager interface - standard across IBM's



Servlet 3 async configuration

6



Servlet 3 async configuration

 Spring web application configuration:

 XML config - update web.xml to version 3.0

 JavaConfig - via WebApplicationInitializer interface

 DispatcherServlet need to have:

 „asyncSupported” flag

 Filter involved in async dispatches:

 „asyncSupported” flag

 ASYNC dispatcher type

7



Spring MVC async configuration

 WebMvcConfigurationSupport – the main class providing 

the configuration behind the MVC JavaConfig:

 the default timeout value for async requests

 TaskAsyncExecutor (default is SimpleAsyncTaskExecutor)

protected void configureAsyncSupport(AsyncSupportConfigurer configurer) {

configurer.setDefaultTimeout(30*1000L); 

configurer.setTaskExecutor(mvcTaskExecutor());

}

protected ThreadPoolTaskExecutor mvcTaskExecutor() {

ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();

executor.setCorePoolSize(10);

executor.setQueueCapacity(100);

executor.setMaxPoolSize(25);

return executor;

}

8



Task Execution and Scheduling

9



 @Async annotation - executing tasks asynchronously

(annotation on a method)

 the caller will return immediately and the actual execution of 

the method will occur in a task submitted to TaskExecutor

 methods are required to have a Future<T> return value
@Async

Future<Task> returnSomething(int i) { 

// this will be executed asynchronously

return new AsyncResult<Task>(results);

}

Spring wraps call to this method in a Runnable instance and 

schedule this Runnable on a task executor

10

Asynchronous invocation in Spring 3.0

http://docs.oracle.com/javase/6/docs/api/java/lang/Runnable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Runnable.html


Async method return value

 Future<T> is a proxy or a wrapper around an object - container that

holds the potential result

 asynchronous task done - extract result

 Future<T> methods:

 get() - blocks and waits until promised result is available 

 isDone() - poll if the result has arrived

 cancel() - attempts to cancel execution of this task

 isCanceled() - returns true if this task was cancelled before it completed normally.

 Concrete implementation AsyncResult - wrap result in AsyncResult

implementing Future<T> interface

11



Exceptions with @Async

 Exception that was thrown during the method execution

 @Async method has a Future typed return value - exception will be thrown 

when calling get() method on the Future result

 @Async method has void return type - the exception is uncaught and 

cannot be transmitted

 void return type - AsyncUncaughtExceptionHandler can be provided 

to handle such exceptions

12



The @Scheduled Annotation

 TaskScheduler abstraction for scheduling tasks:

 TimerManagerTaskScheduler - delegates to a CommonJ TimerManager

instance

 ThreadPoolTaskScheduler external thread management is not a 

requirement (implements Spring’s TaskExecutor)

 @Scheduled annotation – add to a method along with trigger metadata
@Scheduled(fixedDelay=5000)

public void doSomething() {

// something that should execute periodically

}

@Scheduled(cron="* 15 9-17 * * MON-FRI")

public void doSomething() {

// something that should execute on weekdays only

}

13



Servlet 3 - asynchronous request processing

14



Asynchronous request handling

 Spring 3.2 introduced Servlet 3 based asynchronous request processing

 controller method can now return Callable or DeferredResult instance

 Servlet container thread is released and allowed to process other request:

 Callable uses TaskExecutor thread

 DeferredResult uses thread not known to Spring

 Asynchronous request processing:

 Controller returns and Spring MVC starts async processing

 Servlet and all filters exit the request thread, but response remains open

 Other thread will complete processing and „dispetch” request back to 

Servlet

 Servlet is invocked again and processing resumes with async result

15



Callable – an example controller method

@RequestMapping(value = {"callable.html"}, method = RequestMethod.GET)

public Callable<String> callableView(final ModelMap p_model) {

return new Callable<String>() {

@Override

public String call() throws Exception {

//... processing

return „someView";

}

};

}

WebAsyncTask – wrap Callable for customization:

 timeout

 TaskExecutor

16



DeferredResult – an example controller method

@RequestMapping("/response-body") 

@ResponseBody

public DeferredResult<String> quotes() {

DeferredResult<String> deferredResult = new 

DeferredResult<String>();

// Save the deferredResult in in-memory queue ...

return deferredResult;

}

// In some other thread...

deferredResult.setResult(data);

17



Exception handling for async requests

 What happens if a Callable or DeferredResult returned from a controller

method raises an Exception?

 Callable

 @ExeceptionHandler method in the same controller

 one of the configured HandlerExceptionResolver instances

 DeferredResult

 calling setErrorResult() method and provide an Exception or any

other Object as result

 @ExeceptionHandler method in the same controller

 one of the configured HandlerExceptionResolver instances

18



Benefits and downsides

19



Benefits

@Async method:

 asynchronous method calls solves a critical scaling issue

 the longer the task takes and the more tasks are invoked - the more benefit 

with making things asynchronous 

 Async request:

 decouple processing from Servlet container thread - longer request can

exhaust container thread pool quickly

 processing of AJAX applications efficiently

 browser real-time update – server push (alternative to standard HTTP 

request-response approaches: polling, long polling, HTTP streaming)

 Servlet 3 specification:

 asynchronous support

 JavaConfig without need for web.xml and enhancements to servlet API

20



Downsides

21

 threading risks

 additional configuration (servlet, filter, thread pool...)

 asynchronous method calls adds a layer of indirection - no longer dealing 

directly with the results, but must instead poll for them

 converting request or method calls to an asynchronous approach may 

require extra work



References

 http://spring.io/

 http://oracle.com/

 http://docs.spring.io/spring/docs/current/spring-framework-

reference/html/scheduling.html

 http://www.slideshare.net/bruce.snyder/beyond-horizontal-scalability-concurrency-

and-messaging-using-spring

 http://www.slideshare.net/chintal75/asynchronous-programmingtechniques

 http://www.ibm.com/developerworks/library/j-jtp0730.html

22


