

ES6

& The Future Of JS

Nenad Pečanac Serengeti

Contents

- 1) History
- 2) Tooling
- 3) Syntax
- 4) Functions
- 5) Classes
- 6) Collections
- 7) Modules
- 8) Promises
- 9) The Future

1) History

History (1)

JavaScript was created in 1995 by Brendan Eich for Netscape. It was developed as Mocha and released as LiveScript.

It was quickly renamed to JavaScript, as a marketing move due to Java's popularity. New name caused a significant misunderstanding of the language.

Language was created "in a week" and released incomplete. Ambitious design influenced by Java, Perl, Scheme and Self.

History (2)

Microsoft released JScript for IE 3.0 in 1996.

Browser Wars: CSS, DOM, Scripting, Dynamic HTML ...

Netscape delivered JavaScript to Ecma International for

standardization in 1996.

ECMAScript was accepted as the compromised trade name.

History (3)

Release	Year	Changes
1	1997	First edition
2	1998	Editorial changes to keep the specification fully aligned with ISO/IEC 16262 international standard
3	1999	Added regular expressions, better string handling, new control statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and other enhancements
4	-	Abandoned due to political differences concerning language complexity.

History (4)

Release	Year	Changes
5	2009	Adds strict mode, a subset intended to provide more thorough error checking, avoid error-prone constructs and clarifies many ambiguities. Adds some new features, such as getters and setters and library support for JSON.
5.1	2011	Aligned with third edition of the ISO/IEC 16262:2011.
6	2015	ECMAScript Harmony or ES6 Harmony.
7		Work in progress.

Current browser support

http://kangax.github.io/compat-table/es6/

ES ECMAScript 5 6 next intl non	standard	compatibili	ity table								ľ	1) Flattr (<u>71</u>	sy kangex <mark>n</mark>	Scalipey 8	& web ceds	bace & zio ro	ck <u>N</u> For	R 248
Sort by Engine types 🔹 Show posolete platforms 🗉 Show unstable platforms 🖉 👘 Vit 📑 Voder Wookey 📑 Jawbenptione 📑 Chakra 🚍 Onakra 🚍 Show unstable platforms 🎯 Million difference (1 point) – Shell Feature (2 points) – Medium feature (2 points) – Medium feature (2 points) – Medium feature (2 points) – Million difference (1 points) – Million d																			
	61% 61	Compliers/polyfills				Desktop browsers								82% 15	Servers/runtimes				
Feature name 🕨 fun	rent Traceur	Babel + core js ^{i +} Closu	re Script est core-js	δ- m IE 11	Edge Edg 12 ⁻²¹ 13	e FF38 4 ESR	FF 44	FF 45	CH148, CH14 0P 35 ^{UI} OP 36	9, CH 50, 9 ¹⁰¹ CP 37 ¹⁰¹	SF 6.1, SF 7	SF 7.1, SF 8	SF 9 W	K 4.14 ¹⁷	PIS	Node 0.12 ⁽⁵⁾	Node - No 4.0 ¹⁹¹ - 57	:de Echo)⊨ ∣S	×56
Optimisation																			
 proper tail calls (tail call optimisation) Syntax 	/2 0/2	0/2 0/2	C/2 0/2	0/2	0/2 0/2	0/2	0/2	0/2	0/2 0/2	0/2	0/2	0/2 1	W2 2/3	2 0/2	0/2	0/2	0/2 0/	2 0/2	2/2
🖞 default function parameters 💎 🕨 🔼 🐽	17 - A/T	4.7 4.7	4/7 0/7	0/7	0/7 0/7	3/7	4/7	4/7	0.7 7/7	7/7	0/7	0/7)/7 7/.	7 0/7	0/7	0/7	0/7 0/	7 4/7	7/7
🗉 <u>rest parameters</u> 📃 5	/5 4/5	3/5 2/5	3/5 0/5	0/5	5/5 5/5	4/5	5/5	5/5	5/5 5/5		0/5	0/5	X/5 5/3	0/5	0/5	0/5	0/5 0/	5 3/5	5/5
🗉 sprepd (, ,) operator 📃 🕨 15	/15 15/15	13/15 12/15	4/15 O/1	5 O/ 5	12/15 15/1	5 15/15	15/15	15/15	15/15 15/19	5 15/15	0/15	5/15 9	v15 10/	15 O/ 5	0/15	0/15	0/15 15/	15 10/15	15/15
IT object Literal extensions	/6 6/8	6/6 4/6	E/6 0/6	i 0/6	6/6 6/6	6/6	6/6	6/6	6/6	6/6	0/5	1/5	5/6 6/	0/6	D/6	0/6	6/6 6/	6 5./6	6/6
II <u>for of loops</u>	/9 9/9	9/9 6/9	3/9 0/9	0/9	6/4 //4	//9	- 779	//9			- Ω/9	- 279 1	9/9 H/9	9 (1/9	1079	//9		4 774	4/4
🗉 octal and binary literals	74 - 274	4/4 7/4	4/4 2/4	0/4	4/4 4/4	4/4	4/4	4/4	4/4 4/4	4/4	- 0/4	0/4	9/4 4/4	4 (V4	10/4	0/4	4/4 4/	4 2/4	4/4
0 <u>template strings</u>	/5 4/5	4/5 3/5	3/5 0/5	0/5	4/5 5/5	5/5	5/5	5/5	5/5 5/5	5/5	0/5	0/5	5/5 5/3	0/5	0/5	0/5	5/5 5/	5 4/5	5/5
RegExp 'V' and 'u' rlags 0	/4 2/4	2/4 0/4	C/4 0/4	0/4	2/4 4/4	2/4	2/4	2/4	0/4 2/4	2/4.	0/4	0/4 1	0/4 0/4	4 0/4	0./4	0/4	0/4 0/	4 2/4	2/4
destructuring declarations	22 20/22	21/22 18/22	2 14/22 0.2	2 0/22	0.22 0.23	19/2.2	19/22	19/22	0/22 21/22	2 21/22	0/22	9/22 1	9/22 22/	12 0.22	0/22	0/22	0/22 0/3	2 12/22	21/22
n destructuring, assignment	24 23/24	24/24 15/2/	18/24 0/24	4 0/24	0/2/ 0/2-	20/2/1	21/2/1	21/2/1	0/24 23/2/		0/2/1	12/24 2	/2/1 2//	24 0.24	0/2/1	0/27	0/24 0/2	11/24	24/24
i destructuring, parameters	19/23	20/23 1//2-	3 11/23 0/2	3 0/23	023 02:	3 18/23	18/23	18/23	0723 2272		0/23	10/23 1	9723 227. NG	3 02	0/23	0/23	0/23 0/.	3 12/23	23/23
Unicode code point estapes	/2 1/2	1/2 1/2	1/2 0/2	0/2	212 212	W2	1/2	1/2	2/2 2/2	202	W.c	We .	02 2h	2 0/2	U/z	0/2	212 21	2 212	212
<u>Inswiterper</u> <u>Z</u>	/2 U/2	0/2 0/2	G/2 G/2	0/2	0/2 1/2	U/2	212	212	<u>272</u> 272	202	U/2	0/2 1	Ke 10	0/2	U/Z	0/2	0/2 2/	2 212	212
Rindings		6 M 6 M	-14 0100		2001 2001	14.52		14.64	LIN MAL	1.100	2.04	- 14	tre MO	1.04	71.192	1.64	1.994		10 M
		800 800 800 800	(30) (10)		- 000 - 000 - 900 - 900		900	AVA NOTE		1 10.50	-OGU	nar n	200 DM	0 000	DOL:	100	100 10	0 600	1000
his de la cal é cantina de deservite a [12]	. X.	V., V.	Nu Nu	No.	V. V.	NL.	Mr.	M.	V. V.	V	Marth.	Marine M	NILL IN	M NL	No.	EL.	N V.	R.I.	Ver
Encellance Declarcher		165 165	110 110	105	100 100	115	115	145		165	INC	INC	NC INC	115	INC	1.03	165 16	S NO	Tes
and the second s											-		-						
																			Second Second
augusta a																			
THE PARTY OF THE P														101					
THE REAL PROPERTY AND																			
The second territory and the second sec																			

2) Tooling

Tooling

JS-to-JS transpiler is currently required to run ES6. Transpiler compiles code from the latest version into older versions of the language.

As browser support gets better ES7 and ES8 will be transpilled into ES6 and beyond.

Transpilers like Babel also provide human-readable output.

The Babel fish is small, yellow, leech-like, and probably the oddest thing in the universe. It feeds on brain wave energy, absorbing all unconscious frequencies and then excreting telepathically a matrix formed from the conscious frequencies and nerve signals picked up from the speech centres of the brain, the practical upshot of which is that if you stick one in your ear, you can instantly understand anything said to you in any form of language

3) Syntax

Let & Const

Let and const are alternatives to var when declaring variables. Let is block-scoped instead of lexically scoped to a function. Let is hoisted to the top of the block, while var declarations are hoisted to top of the function.

for(let i = 0, l = list.length; i < l; i++) {
 // do something with list[i]
}
console.log(i); // undefined</pre>

whisper words of freedom **let it he**

Let & Const

Const is also block-scoped, hoisted and must be initialized Assigning to const after initialization fails silently (or with an exception under strict mode). const MY_CONSTANT = 1; MY_CONSTANT = 2 // Error, attempt to change const SOME_CONST; // Error, not initialized

Object properties can still be changed const MY_OBJECT = {some: 1}; MY_OBJECT.some = 'body';

Template Strings

Template strings provide syntactic sugar for constructing strings similar to string interpolation features in Perl, Python..

var text = (`foo bar baz`)

var name = "Bob", time = "today"; `Hello \${name}, how are you \${time}?`

Destructuring

Destructuring provides binding using pattern matching, with support for matching arrays and objects.

// Array matching

var list = [1, 2, 3]
var [a, , b] = list // a=1, b=3
[b, a] = [a, b] // a=3, b=1

// Object matching
var robotA = { name: "Bender" };
var robotB = { name: "Flexo" };

// Fail-soft matching
var [missing] = [];
console.log(missing); // undefined

var { name: nameA } = robotA; console.log(nameA); // "Bender,, var { name: nameB } = robotB; console.log(nameB); // "Flexo"

Object Literals

Object literals are extended with several new features:

var obj = {

// __proto___

```
_proto__: theProtoObj,
```

```
// Shorthand for 'handler: handler'
```

handler,

```
// Methods
```

```
toString() {
```

```
// Super calls
```

```
return "d " + super.toString();
```

```
},
```

// Computed (dynamic) property names

```
[ 'prop_' + (() => 42)() ]: 42
```

};

4) Functions

Arrow Functions

Arrows are a function shorthand using the

param => return_value syntax:

// Expression bodies

```
var odds = evens.map(v = v + 1);
```

```
var nums = evens.map((v, i) => v + i);
```

var pairs = evens.map($v = > (\{even: v, odd: v + 1\}));$

```
// Statement bodies
nums.forEach(v => {
    if (v % 5 === 0)
        fives.push(v);
});
```

Arrow Functions


```
Arrow functions inherit THIS value from the enclosing scope:
this.nums.forEach((v) => {
    if (v % 5 === 0)
        this.fives.push(v)
})
```

```
In ES5 we have to use self/that trick:
var self = this;
this.nums.forEach(function (v) {
    if (v % 5 === 0)
        self.fives.push(v);
})
```


5) Classes

Classes (1)

ES6 classes are syntactic sugar over the prototype-based OO pattern.

Classes are a well-debated feature of ES6.

Some believe that they go against the prototypal nature of JavaScript, while others think they lower the entry barrier for beginners and people coming from other languages.

Classes (2)


```
class Vehicle {
   constructor(name) {
     this.name = name;
     this.kind = 'vehicle';
   }
   getName() {
     return this.name;
   }
}
```

// Create an instance
let myVehicle = new Vehicle('rocky');

6) Collections

Iterators

let fibonacci = {

```
[Symbol.iterator]() { // default iterator for an object.
 let pre = 0, cur = 1;
 return {
  next() {
                     // required method
   [pre, cur] = [cur, pre + cur];
   return { done: false, value: cur }
```

For .. of Loop

For .. of loop is new loop for all iterables.It starts by calling the [Symbol.iterator]() method which returns a new iterator object.An iterator object can be any object with a next() method.

```
for (var n of fibonacci) {
    // truncate the sequence at 1000
    if (n > 1000)
        break;
    console.log(n);
}
```

Map + Set

// Maps var m = new Map(); m.set("hello", 42); m.set(s, 34); m.get(s) = = 34;// Sets var s = new Set(); s.add("hello").add("goodbye").add("hello"); s.size === 2; s.has("hello") === true;

WeakMap + WeakSet

Weak collections allow GC collection of their keys.

// Weak Maps

- var wm = new WeakMap();
- wm.set(s, { extra: 42 });
- wm.size === undefined
- // Weak Collections are not enumerable and do not have size

// Weak Sets

var ws = new WeakSet();

ws.add({ data: 42 });

// If data has no other references, it can be GC collected

7) Modules

Modules (1)

Language-level support for modules for component definition.

Codifies patterns from AMD, CommonJS ..

Runtime behaviour defined by a host-defined default loader. Implicitly async model – no code executes until requested modules are available and processed.

Modules (2)


```
// lib/math.js
export function sum(x, y) {
  return x + y;
}
export var pi = 3.141593;
```

```
// app.js
import * as math from "lib/math";
alert("2π = " + math.sum(math.pi, math.pi));
```


8) Promises

Promises

Promises are used for asynchronous programming.

Promises are first class representation of a value that may

be made available in the future.

Promises are used in many existing JavaScript libraries.

Promises

function resolveUnderThreeSeconds (delay) { return new Promise(function (resolve, reject) { setTimeout(resolve, delay); // once a promise is settled, it's result can't change setTimeout(reject, 3000); }) resolveUnderThreeSeconds(2000); // resolves! resolveUnderThreeSeconds(7000); // fulfillment took so long, it was rejected.

9) The Future

Future releases (1)

ES7 is due 12 months after ES6. TC39 (the ECMAScript standard committee) is embracing 12 month release cycle. New, naming convention:

> ES6 = ES2015 ES7 = ES2016 ES8 = ES2017 ...

Completed features will be published once a year, others will be scheduled for the next release.

Future releases (2)

"ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical enhancement will continue with future editions of this specification."

... ES 5 specification

Future releases (3)

New proposed features for ES7:

- concurrency and atomics,
- zero-copy binary data transfer,
- number and math enhancements,
- observable streams,
- better metaprogramming with classes,
- class and instance properties,
- operator overloading,
- value types (first-class primitive-like objects),
- records, tuples, traits ...

The End

To be continued ...