Java CI’OE SD)crour

Who's afraid of design patterns?
Not JDK!

Alen Kosanovié¢, SV Group d.o.o.

alen.kosanovic@svgroup.hr
Rovinj, May 11th 2017

Why am | here? (1)

f
5‘)GROUP

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Camma
Richard Helm

Ralph Johnson
J{}h n Wlissides

Foreword by Grady H-r:-nch

Head First

Design Patterns
Learn why everything
Avoid those ﬁ your friends know about Factory

embarrassing C pattern is
coupling mistakes ; probably wrong ﬁg

) |

=~y

88 5
S,
- [
Discover the secrets
of the Patterns Guru

Find out how
Starbuzz Coffee doubled
their stock price with
the Decorator pattern

Load the patterns
that matter straight
into your brain

g
See why Jim's
(** love life improved
. i when he cut down
his inheritance

O'REILLY"

Who's afraid of design patterns? Not JDK!

f
5‘)GROUF’

Why am | here? (2)
" IDONTUSUALLY
WRITEFACTORIES

4

__ p
s 4

JBUT WHEN 1D0 | USE THEM

__FOR SHAPES AND CIRGLES|

Who's afraid of design patterns? Not JDK!

Builder

I’m gonna build a great How to spot them?

P!’OCGSS.. A_nld the JVM Instance methods return the instance itself.

will pay for it! Tend to be named after the property being set.
Classes named XXXBuilder.

A ‘build’ method that returns the object being built

Examples:
+ java.lang.StringBuilder

. . java.lang.StringBuffgr
 java.lang.ProcessBuilder

- java.text.CalendarBuilder

(]

—

Who's afraid of design patterns? Not JDK!

T—‘ac’ror\;) method

Can | get a calendar?

How to spot them?

« Creational methods returning a new instance of

Examples:

a . an interface / abstract class.
]
I

mmm Sure, let me get you

« java.util.Calendar#getinstance()
« java.util.ResourceBundle#getBundle()

an instance! _
« java.text. NumberFormat#getinstance()
* java.nio.charset.Charset#forName()
00— =20 O
Buddhist Japanese Gregorian
Imperial

Who's afraid of design patterns? Not JDK!

S’\njle’ron

How to spot them?
« Class has one global point (static method) of
acquiring the same instance (usually of itself)
every time.

Examples:

java.lang.Runtime#getRuntime()
java.awt.Desktop#getDesktop()
java.util.logging.LogManager#getLogManager()
java.lang.System#getSecurityManager()

Who's afraid of design patterns? Not JDK!

QO\anQF

How to spot them?

* Creational methods that take an instance of an
Reader interface and returns an instance of a different
interface.
Usually called XXXAdapter or XXXWrapper or
XXXTranslator.

Examples:

InputStreamReader * java.io.InputStreamReader(InputStream)
java.io.OutputStreamWriter(OutputStream)

java.util. Arrays#asList()

java.util.Collections#list()

java.util.Collections#enumeration()

Who's afraid of design patterns? Not JDK!

‘Decorator

How to spot them?

« Creational methods
taking an instance of an interface / abstract class
returning another instance of the same interface /
abstract class with added behavior.

« Can also be called XXXWrapper.

Examples:

« All static classes of type SynchronizedXXX,
UnmodifiableXXX, CheckedXXX from the
Collections class.

« All subclasses of java.io.InputStream,
OutputStream, Reader and Writer have a
constructor taking an instance of the same type.

SynchronizedList

Who's afraid of design patterns? Not JDK!

Comf:os'\’re

Component HOW to SpOt them?
» Behavioral methods taking an instance
Component Component omponent of same abstract/interface type into a tree structure.
Component Exa m p I es :
omenent « java.awt.Container#add(Component)

Component

Component Component

Who's afraid of design patterns? Not JDK!

Fl\;)we'gh’r

Integers! Integers! We have them all here! How to spot them?
They are all ready « Creational methods return a cached instance of
for use! the class.
No need to create
your own!
Examples:

 java.lang.Integer#valueOf
 java.lang.Boolean#valueOf
 java.lang.Byte#valueOf
 java.lang.Character#valueOf
 java.lang.Short#valueOf

* java.lang.Long#valueOf
 java.lang.BigDecimal#valueOf

Who's afraid of design patterns? Not JDK!

Chain of resPons‘\b‘\l‘\’rg

Hey, can you .

handle this
request
for me?

ol

| can do it! .

Ugh..itry.. How to spot them?

(..tojust give it « Behavioral methods that invoke the same method

to Bob..) of another implementation of the same interface
or abstract class.

Ithink 'ljust Examples:

give it to our - javax.servlet.Filter#doFilter()
't?]teerren over - java.util.logging.Logger#log()

Who's afraid of design patterns? Not JDK!

Cormmand

You! Do your task!

How to spot them?
« Aninstance of an interface / abstract (Command
object) is invoked by another object (Invoker
object).

Examples:

* Implementations of javax.swing.Action are
Command objects that are called by Swing
components (Invoker object).

« Implementations of java.lang.Runnable are
Command objects that are called by an Invoker
object like Thread.

N

Task open file Task save file Task close file

Who's afraid of design patterns? Not JDK!

S’n‘a’rejg

Sort them by their age..
and then by their last name.

How to spot them?

» Strategies are usually provided as an argument
when calling an algorithm, thus enabling the
behavior of the algorithm to be selected at
runtime.

Examples:

* java.util.Comparator#compare(), executed by
among others Collections#sort().

Who's afraid of design patterns? Not JDK!

\q :s.,i;

. 4 <%
' |
| .

Further reading

http://stackoverflow.com/questions/1673841/examples-of-gof-design-
patterns-in-javas-core-libraries

JDK source code.

Source codes of familiar frameworks.

Credits for the illustrations go to Freepik.

Who's afraid of design patterns? Not JDK!

http://stackoverflow.com/questions/1673841/examples-of-gof-design-patterns-in-javas-core-libraries

