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Head First

Design Patterns
Learn why everything
Avoid those ﬁ your friends know about Factory

embarrassing C pattern is
coupling mistakes ; probably wrong ﬁg
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Discover the secrets
of the Patterns Guru

Find out how
Starbuzz Coffee doubled
their stock price with
the Decorator pattern

Load the patterns
that matter straight
into your brain

g
See why Jim's
(**  love life improved
. i when he cut down
his inheritance
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Why am | here? (2)
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JBUT WHEN 1D0 | USE THEM

__FOR SHAPES AND CIRGLES|
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Builder

I’m gonna build a great How to spot them?

P!’OCGSS.. A_nld the JVM Instance methods return the instance itself.

will pay for it! Tend to be named after the property being set.
Classes named XXXBuilder.

A ‘build’ method that returns the object being built

Examples:
+ java.lang.StringBuilder

. . java.lang.StringBuffgr
 java.lang.ProcessBuilder

-  java.text.CalendarBuilder
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Can | get a calendar?

How to spot them?

« Creational methods returning a new instance of

Examples:

a . an interface / abstract class.
]
I

mmm Sure, let me get you

« java.util.Calendar#getinstance()
« java.util.ResourceBundle#getBundle()

an instance! _
« java.text. NumberFormat#getinstance()
* java.nio.charset.Charset#forName()
00— =20 O
Buddhist Japanese Gregorian
Imperial
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How to spot them?
« Class has one global point (static method) of
acquiring the same instance (usually of itself)
every time.

Examples:

java.lang.Runtime#getRuntime()
java.awt.Desktop#getDesktop()
java.util.logging.LogManager#getLogManager()
java.lang.System#getSecurityManager()
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How to spot them?

* Creational methods that take an instance of an
Reader interface and returns an instance of a different
interface.
Usually called XXXAdapter or XXXWrapper or
XXXTranslator.

Examples:

InputStreamReader * java.io.InputStreamReader(InputStream)
java.io.OutputStreamWriter(OutputStream)

java.util. Arrays#asList()

java.util.Collections#list()

java.util.Collections#enumeration()
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How to spot them?

«  Creational methods
taking an instance of an interface / abstract class
returning another instance of the same interface /
abstract class with added behavior.

« Can also be called XXXWrapper.

Examples:

« All static classes of type SynchronizedXXX,
UnmodifiableXXX, CheckedXXX from the
Collections class.

« All subclasses of java.io.InputStream,
OutputStream, Reader and Writer have a
constructor taking an instance of the same type.

SynchronizedList

Who's afraid of design patterns? Not JDK!
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Component HOW to SpOt them?
» Behavioral methods taking an instance
Component Component  omponent of same abstract/interface type into a tree structure.
Component Exa m p I es :
omenent « java.awt.Container#add(Component)

Component

Component Component
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Integers! Integers! We have them all here! How to spot them?
They are all ready «  Creational methods return a cached instance of
for use! the class.
No need to create
your own!
Examples:

 java.lang.Integer#valueOf
 java.lang.Boolean#valueOf
 java.lang.Byte#valueOf
 java.lang.Character#valueOf
 java.lang.Short#valueOf

* java.lang.Long#valueOf
 java.lang.BigDecimal#valueOf
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Hey, can you .

handle this
request
for me?

ol

| can do it! .

Ugh..itry..  How to spot them?

(..tojust give it «  Behavioral methods that invoke the same method

to Bob..) of another implementation of the same interface
or abstract class.

Ithink 'ljust  Examples:

give it to our - javax.servlet.Filter#doFilter()
't?]teerren over - java.util.logging.Logger#log()
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Cormmand

You! Do your task!

How to spot them?
« Aninstance of an interface / abstract (Command
object) is invoked by another object (Invoker
object).

Examples:

* Implementations of javax.swing.Action are
Command objects that are called by Swing
components (Invoker object).

« Implementations of java.lang.Runnable are
Command objects that are called by an Invoker
object like Thread.

N

Task open file  Task save file  Task close file
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Sort them by their age..
and then by their last name.

How to spot them?

» Strategies are usually provided as an argument
when calling an algorithm, thus enabling the
behavior of the algorithm to be selected at
runtime.

Examples:

* java.util.Comparator#compare(), executed by
among others Collections#sort().
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Further reading

http://stackoverflow.com/questions/1673841/examples-of-gof-design-
patterns-in-javas-core-libraries

JDK source code.

Source codes of familiar frameworks.

Credits for the illustrations go to Freepik.
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